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Some Stories….

Isn’t software maintenance free?  It was free at the university research 
programs!

- Program Office Manager 

But we are just cloning the last mission so flight software budget is 
basically ZERO, right!  (Oh and all the instruments/sensors have been 
changed)

- A Different Program Office Manager 
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Why explore alternative modeling methods? 

• For most of our history the cost community has relied 
upon regression based modeling methods

• Sometimes regression breaks down

• Regression methods have the underlying assumption 
of clean and complete data with large sample sizes

• Guess what - Most cost data suffers from sparseness,  
noise, and small sample sizes

• The point is we need more tools in our toolkit



Formal Analogy and Bayesian Models are a Natural Next Step in the 
Evolution Cost Modeling and Analysis

5



6

What We Learned from Methodology

• There are a variety of models whose performance are hard to 
distinguish (given currently available data) but some models are 
better than others

• If one has sufficient data to run a parametric model such as 
COCOMO then the best model has repeatedly been found to ne the 
parametric model 

• When insufficient information exists then a model using only 
system parameters can be used to estimate software costs with 
‘acceptable’ reduction in accuracy.  The main weakness is the 
possibility of occasional very large estimation errors which the 
parametric model does not exhibit.

• A major strength of the nearest neighbor and clustering methods is 
the ability to work with a combination of symbolic and numerical 
data

• While a nearest neighbor model performs as well or better as 
clustering based on MMRE, clustering handles outliers better and 
provides a structured model that supports cost analysis and not 
just prediction
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“ASCoT” Key Analysis Components
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• Cluster & Regression Analysis components listed rely on high level Mission 
Descriptors such as # of Instruments and Mission Type

• COCOMO II is a reproduction and uses traditional inputs

Cluster Analysis

• Clustering

• Development 
Effort 
Estimate

Regression 
Analysis

• Linear 
Regression

• Development 
Cost Estimate

COCOMO II

• Verified 
Reproduction

• Cost/Effort

Knn Analysis

• Nearest 
Neighbor

• Development 
Effort and 
SLOC Estimate

Analogy 
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We Are Estimating With minimum Inputs

Cluster and KNN algorithms use

• Spacecraft Type

• Destination

• Number of Instruments

• Number of Deployables

• Software Inheritance Categories

• Mission Size ($) Categories

Regression Model uses

• Spacecraft Development Costs

• Number of Instruments

No 
SLOC



Improved Input Parameters

• Original Mission-Type parameter combined type of Mission Type with Destination
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Data Summary – Key Metrics

• Total of 51 missions with data 
– 47 can be used in at least 1 of the estimation models

• Missions by Destination
• Earth – 23

• Asteroids/Comets – 7

• Inner Planets– 17

• Outer Planets – 4
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Data Summary – Key Metrics

• Effort, Lines of Code and Productivity by Destination

• Number of Deployable and Instruments by Destination
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1000 Number	of	Deployables	and	Instruments	by	Mission	Type

Destination

Median Range Median Range

Astreroids/Comet 3 2-5 1 0-3

Earth 3 1-10 2 0-8

Inner 4 3-10 2 0-10

Outer 10 7-12 3 0-8

DeployableInstrument



Clustering Algorithms Evaluated

• Conducted extensive analysis to verify this was indeed the 
best method 
– Spectral Clustering

– K-Means

– Hierarchical Clustering

– PCA- Principle Components

• The methods were examined for 
– cluster membership stability

– minimum within-cluster range

– Effort estimation error based on leave-one-out MRE 
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Rm: HST (Hubble, 1830), Near (48)

This!

Rovers

Large Outer Planets
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Estimation Model 

Median 

MRE 

(MMR
E) 

25
th
 

Percent

ile 

75
th
 

Percenti

le 

Knn1  

(Nearest Neighbor)  

32% 14% 80% 

PEEKING2  

(Spectral 
Clustering) 

32% 16% 97% 

COCOMO2 36% 22% 55% 

Mission Type 
Summary Table 

38% 14% 106% 

COCONUT 44% 32% 62% 

 Negative results for software effort Estimation, Empirical Software Engineering,  Nov 2016
Menzies, Yang, Mathew, Boehm, Hihn

• To compare models we use MRE metrics from  leave one out validation
• COCOMO II out of the box performs well against parametric and non-

parametric models
• Even performs well against local calibration
• If you have enough information run a parametric model !!

Comparing Model Performance



Model MRE Performance
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MRE Comparison Based on Test Cases

ASCoT 

Prototype ASCoT Beta ASCoT

1 0% 1% 2%

2 1% 3% 3%

3 3% 3% 7%

4 4% 10% 8%

5 4% 22% 15%

6 35% 23% 27%

7 45% 29% 32%

8 79% 35% 35%

9 101% 37% 37%

10 102% 51% 51%

11 192% 54% 54%

12 506% 175% 107%

Median 

MRE 40% 26% 30%

Average 

MRE 89% 37% 32%

Model Estimation Error, based on MRE, is steadily improving

In
n

e
r 

Q
u
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le



For PCA Pred (50) = 86%



Cluster Parameter 
Variation



By gradually increasing the granularity of our clusters, while maintaining 
robustness to avoid overfitting, we were able to find logical separation 
between groupings of missions

Increasing granularity

A
ll 

m
is

si
o

n
s

Missions

Rovers

Missions

Large 
Outer 

Planetary

Rovers

Planetary

Large 
Outer 

Planetary

Rovers

Earth & 
Inner 

Planetary

Planetary

Large 
Outer 

Planetary

Rovers

Earth & 
Inner 

Planetary

Earth

Planetary 1

Large Outer 
Planetary

Rovers

Earth & 
Inner 

Planetary

Earth

Landers

Planetary 2

Planetary 2

Large 
Outer 

Planetary

Rovers

Earth & 
Inner 

Planetary

Earth

Planetary 1

Clustering Analysis 2
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Number 
of 
Clusters

2 3 4 5 6 7 8



1 2 3 4 5 6 7

Small 
Earth

Very 
Large 
Outer 

PlanetsLanders

Rovers

Large 
Earth

Small 
Asteroid/C
omets and 

Inner 
Planets

Large     
Non-Earth

Ef
fo

rt

Cluster 

Reduced Cluster Effort Variation
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Cluster Parameter Summary
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Cluster
Mission	Cost

Median	

Mission	Cost

Range	

Software	

Inheritance
Destination

Mission	

Type

flight	Computer		

Redundancy

Number	of	

Instruments

Number	of	

Deployabes

Development	

Work	Months

Median

Development	

Work	Months

Range

1 $321M $170M	-	$500M High-Very	High Earth Orbiter Single	String 1	to	4 0	to	4 492 230	to	870

2
$824M $420M	-	$1,250M Medium	to	High

Earth	&	Inner	

Planets Orbter

Dual	String	-	

Cold	backup 2	to	6 2	to	8 603 340	to	790

3
$292M $220M	-	$550M Medium

Asteroid/Comets	

&	Inner	Planets

Orbiter/	

Flyby

Dual	String	-	

Cold	backup 2	to	7 0	to	3 525 450	to	1040

4
$548M $630M	-	$820M High-Very	High

Inner	Planet	

(Mars) Lander

Dual	String	-	

Warm	backup 4	to	5 2	to	3 728 630	to	820

5

$696M $550M	-	$850M High-Very	High

Inner/Outer	

Planets

&	

Asteroids/Comet

Orbiter/	

Flyby

Dual	String	-	

Cold	backup 3	to	9 0	to	3 641 400	to	690

6
$1,123M $420M	-	$2,600M None-Low

Inner	Planet	

(Mars) Rover

Dual	String	-	

Warm	backup 3	to	10 6	to	10 1735 1000	to	1890

7
$2680M $2,300M	-	$3,000M None-Low Outer	Planets

Orbiter/	

Flyby

Dual	String	-	

Warm	backup 11	to	12 4	to	8 978 650	to	1300

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes
only. It does not constitute a commitment on the part of JPL and/or Caltech
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ASCoT Web Model:  
KNN Model Main View

Results based on 
Euclidian distance

Model Inputs

Estimate
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Conclusions

• Our research has demonstrated that for a well 
defined domain that cluster based algorithms 
can predict software development costs 
within +/- 50% using a small number of system 
level categorical parameters.
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